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Fig. 5. Normalized cutoff wavelength as fnnction of flat-width ratio. Slashes

indicate maximnm values of ~ for which theory is expected to be valid.

Curve n = m is circular case. Crosses are Gruner’s results [1] for n =4.

The first requires that the comer regions must be small enough

compared with the wavelength that the quasistatic assumptions

used to derive the equivalent network constants L and C are

justified. Given that we observe that AC= 1, this must always be

so.

The other is that the comers are far enough apart so that each

can be considered isolated from the others. Essentially this means

that a, the length of each of the parallel-plate line segments,

should not become much less than comparable with the sep-

aration of the plates [5]. The greatest value of s for which the

solution is likely to be accurate is s = 1 + 2 tan n/ n. For a square

coaxial line ( n = 4), this would give s = 3 and for an air-filled

square coaxial line where s = 3.5, ZO = 70S2 [6]. It is reasonable

to conclude that, for this case, the method is valid for almost all

lines likely to be of any practical significance.

In Fig. 5 are shown results computed by this method for n =3,

4, and 5. The slashes indicate the maximum values of s for which

the theory would ordinady be believed to be good. The crosses

are sample values from Gmner’s numerical solution for the

square coaxial line, and are to be compared with our curve for

n = 4. Agreement is seen to be very good well beyond the range

in which the theory is expected to hold. The curve labelled

n = ea, the circular coaxial line, is included for comparison,

although the present theory is not applicable to it.

III. GENERALIZATION OF THE METHOD

This technique can be applied to more general cases, such as a

line consisting of a rectangle within a rectangle. Even concentric-

ity is not required; all that is needed is that the cross section be

made up of sections of parallel-plate line joined by mitred

elbows. In this more general case, simplications which result from

symmetry are, of course, no longer available. Equation (1) needs

to be used to determine resonance and a large number of differ-

ent matrices will have to be multiplied to determine A, D.

Determination of L and C for each comer could still be

undertaken quasistatically on the assumption of isolated corners.

In the more general case for L this is easy [7], but for C resorting

to some numerical technique such as finite differences would be

needed [5]. Valid application of the method continues to rest on

having a cross section with small, well-isolated corners.

It maybe true though that-unless one enjoys advantages such

as the ready availability of a software package for handling

finite-difference solutions of Laplace’s equation-for these more

general cases, if a precise answer is required the cross-sectional

resonance technique begins to lose its advantage over a purely

numerical solution. On the other hand, if a bound on the answer

is all that is required, this method would indicate that a good

opening approximation is simply to assume that the cutoff wave-

length equates to the mean line circumference.

IV. CONCLUSIONS

A theoretical development has been given which allows ap-

proximate determination of the cutoff wavelength of the first

higher order mode in any transmission line consisting of a pair of

coaxial, similar, similarly oriented regular polygons. Comparison

for the case of a square coaxial line with results obtained by a

purely numerical method indicates that agreement within a few

percent is to be expected for all lines having characteristic imped-

ances likely to be of practical interest. Moreover, even without

solving the transcendental equation which this approach pro-

duces, it is possible to put bounds on the normalized cutoff

wavelength of the first higher order mode. If the problem is

simply to avoid exciting it, this alone may be enough. It has also

been shown that this method is capable of handling more general

problems that do not exhibit a high degree of symmetry.
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An Explicit Six-Port Calibration Method using Five

Standards
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P. I. SOMLO, SENIOR MEM8ER, IEEE

Abstract —A six-port reflectometer calibration method using five stan-

dards is developed, and gives explicit unambiguous expressions for the

calibration constants. The standards are restricted only in that their

impedances may neither all have the same magnitude nor afl have the smne
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argument. The method permits exact (nonideafized) descriptions of the

standards to be used, and the redundancy inherent in the analysis is utilized

to reduce the problems associated with measurement noise.

I. INTRODUCTION

Various methods for calibrating six-port reflectometers have

been suggested in the literature [1]–[6]. Important differences

between these methods include the number of calibrating stan-

dards required, restrictions on tie type of standards, and the

amount of computational effort needed to find the calibration

constants. Some calibration algorithms [5], [6] assume the use of

ideal lossless standards having Irl=l, but this leads to measure-

ment inaccuracies since practical standards are never lossless.

When the highest reflectometer accuracy is sought, it is important

that the calibration algorithm admit accurate descriptions of the

practical (nonideal) standards used.

This paper presents an explicit (noniterative) calibration

method requiring five standards. None of the standards is as-

sumed ideal, but it is suggested that one be near a match in order

to improve the performance of the calibrated reflectometer near

the centre of the Smith chart [7]. The mathematical approach is

reminiscent, in part, to that of Li and Bosisio [5], and results in

an algorithm which is computationally rapid.

II. INITIAL CONCEPTS

A six-port reflectometer has power meters connected to the

four ports designated i =1, 2, 3, and 4, and a termination with

reflection coefficient l_f’ connected to the measuring port. From

the theory of six-port junctions [8], the ratio P,,, of power

measured at port i to that measured at port 4 can be expressed as

2
l+ A,r;

pi,,=% i=l,2,3
l+ A4r: ‘

which has a solution in the form

~ ~P,,t+j~ G,P,,t
r:= i=l ,=1

4

(1)

(2)

where the ~, G,, and H, are given in terms of the q, and A, in

the Appendix. The six-port is therefore calibrated once the three

real constants q, and four complex constants A, have been

determined.

The calibration method developed here uses five standard

terminations having reflection coefficients r~ ( k = 1,. . .,5) in the

desired 20 system of measurement. The analysis would be greatly

simplified if one of these standards had a reflection coefficient of

zero, but this is impossible to realize in practice. However, we can

achieve the same analytical simplification by electing to calibrate

the reflectometer to measure reflection coefficients r‘ in a system

with the impedance of (say) Z5 of the fifth standard. In such a

system, the standards are described by

To calibrate the six-port, the five standards are connected

successively to the measuring port, and the power ratios P,, k

recorded. Since we have normalized to ensure r( = O, it follows

immediately from (1) that

9,= P,,57 i=l,2,3 (5)

and it only remains to determine the Al from (l), which has

simplified to

2

l+ A,r~
T,k=p= i=l,2,3.

l+ A4r~ ‘
(6)

1,5

III. DETERMINATION OF THE AZ

It is convenient at the outset to separate the real and imaginary

parts of the A, and r;, and define

a, + jb, = A,

(7)

For each port i, (6) maybe expanded as

IA,12 +2cka, –2skbl =Rl, k, k=l,2,3,4 (8)

where

~k–l
R— 1+z,k[lAd2+Zckad–2s~b4 .z,k=

lr~lj

(9)

Eliminating the IA, 1, a,, and b, from the four expressions in (8)

gives

flA412+ gza4–h1b4+e1=0 (lo)

where

4

k=l

4

h, = 2 ~ ~,kykSk

k=l

(11)

rk – r5
r;=—

l–rkr~’
k=l,.. .,5 (3)

where

and, in particular, r( = O. Because of this normalization, a reflec-

tion coefficient r; calculated from (2) is that for a Z5 system,

but is readily transformed into that for a ZO system by

and one form of the y~ is given in the Appendix.

From (10), and a similar expression for port j, the components

of A4 are calculable as

( 2 _~ )’/2
1A412 =MJ – M,,, ,,]

(12)

(13)

r:+ r~
rf=—

I + r;r~
(4)
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El =g,h, –kg,

t,=k~-~h,

$3 =hie, – e,h,

t4=&f-Lg,

15=g, eJ–e, gj. (14)

Having computed Ad, the four values R,, ~, k =1, 2, 3, and 4

for each i may be calculated from (9). Then, any three values

1, m, n of k allow the components of the remaining three A, to be

computed from (8) as

Ri,,(s~– sn)+R,, ~(sn–s,)+ R1, n(s, –sm)

‘Z= 2[c[(.rm -s.)+ cm(s. -s/)+ cn($, -~m)l

~ = R,, /(c~–cn)+ R,, ~(cm–cl)+R,, H(c, –c~)
i=l,2,3.1

z[cl(sm –%)+% (sn-s,)+cn(sl-sm)] ‘

(15)

IV. DISCUSSION AND RESULTS

The q, and AZ are calculable from (5), (12), and (15), and then

the ~, Gi, and HI, from the Appendix. After these calculations, a

direct measure of the quality of the calibration is obtained if the

values Pi, ~ (k=l,. . . ,5) are substituted into (2), and the results

compared with the r;.

An examination of (11) shows that the analysis collapses if all

yk = O. This precludes the use of five standards whose imped-

ances all have the same magnitude, or all have the same argu-

ment. Because of their availability, it is convenient (but not

necessary) to choose four standards to be offset short circuits,

and the fifth Z5 to be near a match in the desired ZO system of

measurement. In order to ensure a reasonably even distribution

of standards on the Smith chart, it is beneficial to phase the

offset short circuits approximately 90° apart.

Four forms of expression can be found for the y~ by eliminat-

ing the IA, 1, ai, and b,, from (8) in any one of four different

ways. Each of these forms will yield all y~ = O for particular

permutations of the four standards r~, ( k = 1,2, 3, and 4) if these

have equal magnitudes and are symmetrically disposed on the

Smith chart. For the form of yk given in the Appendix, this

potential difficulty is avoided if the two standards having the

most positive values of Ck are assigned the indices k = 1 and

k=3.

The three possible combinations of i and j which lead to (12)

give three expressions for a., b., two of which are redundant.

Similarly, there are four expressions available for each al, b,,

(i= 1,2, 3) from (15), three of which are redundrmt. In practice,

these expressions do not result in identicd values. Gross dis-

crepancy between the values is an early indication of gross

inconsistency in the calibration. The effect of measurement noise,

connector scatter, and imperfect description of the standards

causes small discrepancies, and may be reduced by averaging the

values.

We now consider the choice of sign in (13). Since it is only

meaningful to define the ratio in (1) if the power measured at

port 4 is never zero, reflectometers used for the measurement of

passive terminations have 0< lA41 <1. Since N,, ~ >0 and there-

fore l~i,jl Z (M;, – N,, J)l/2, it follows from (13) that M,,, must

be posltwe or zero to satisfy the constraints on IA41. In the

particular circumstance lr~l = C (k= 1, 2, 3, and 4) where C is a
constant, then Xy~ = O, e, = f, /C, and N,,l = l/C4 b 1. There-

fore M,,J >1, and the negative sign in (13) is necessary. Any

0.992,
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Fig. 1. A demonstration of the capability of a six-port reflectometer calibrated

using five standards. The measured magnitude and phase of the reflection

coefficient of a precision coaxiaf sliding short circuit at 7 GHz are shown,

with the phase plotted as deviation from nominal.

doubt about the general applicability of this negative sign is

readily resolved in practice after reprocessing the calibration data

using the opposite sign, and applying the quality of calibration

test discussed above.

The form of (1) is invalid if any power meter responds solely to

the signal reflected from the measuring port. (If r~ = O, then

~,, ~ = O forcing q, = O). Such six-port designs are not favored

because of the large dynamic range demanded of the power meter

[8], but a suitable calibration algorithm paralleling that given

here, and based on an alternative expression to (l), is available

from the authors.

The calibration algorithm has been implemented on a desk-top

computer and applied to the six-port junction of Somlo and

Hunter [4], with the power measured either by Schottky diodes

calibrated in situ, or by a recently developed accurate technique

using uncalibrated diodes [9]. For coaxial measurements, four

standards are realized using a sliding short circuit whose losses

and micrometer error are known from the application of a

technique described elsewhere [4]. The fifth standard is a load

element sliding in a precision coaxial line (nominal impedance

ZO = 50 Q) with Z5 calculated from the measured line dimen-

sions and the theoretical properties of the line materials. The

effect on P,, ~ of the residual reflection of the load element is

reduced by setting it to three positions along the line, and

applying an averaging algorithm [7]. The calibration quality is

such that the magnitude of the difference between the known

reflection coefficient 17,Jof each standard, and that computed

from (2) using the ~, ~, is less than 10-4.

Tests with the fifth standard significantly different to ZO

([1’5 I > 0.2) revealed increasing sensitivity of the results to the

measurement noise.

As a demonstration of the capability of a six-port reflectometer

system calibrated using these five standards, the magnitude and

phase of the reflection coefficient of a precision coaxial sliding

short circuit were measured at 7 GHz. The short circuit was

moved in equal increments over a half-wavelength, and the

results are shown in Fig. 1.. The standard deviation of the

magnitude was 0.0004, and the measured phase tracked the

nominal phase within 0.10 with a standard deviation of 0.032°,

equivalent to a positioning error of less than 2 pm.

V. CONCLUSIONS

A method requiring five standards has been presented for the

calibration of a six-port reflectometer. Accurate descriptions of

practical standards are admitted, and the calibration constants

are given by explicit unambiguous formulas which are readily

programmable and rapidly evaluated. It is shown how the re-
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dundancy

effects of

inherent in the analysis may be used to reduce the

measurement noise, connector scatter, and imperfect

descriptions of the calibrating standards.

It is suggested that, in practice, the standards be four short

circuits offset by approximately 90°, and a near match. These

standards are convenient because of their availability, and benefi-

cial in that their distribution is likely to avoid the accuracy

degradation which can occur when measuring in areas of the

Smith chart remote from a calibrating standard. Results are

presented which demonstrate the viability of the calibration

method.

A BASIC listing of the calibration algorithm is available from

the authors.

APPENDIX

Expressions [5] for the constants ~, G,, and HZ in terms of the

q, ~d ~,) ~d for Y, are given here in compact programmable
form:

q=~[\A,l’(bk-b, )+\Akl’(b, -~)+ lA{l’(bJ-bk)]

G1=+[lA,12(ak-a, )+[Ak12(a1-aJ)+lA[12(a,-ak)]
1

q=~[lAJ\’(akb,-a,bk)+lAkl’(a,~-a,b,)
+Ifl,[’(a,bk –ak~ )1

Yz=(y%) [($-~, )(ck-c/)–(c,–q)(.w%)]

+(ck–c,) [(sl–s, )(c, –ck)–(c, –c,)(s, –sk)]

where

i=l,2,3, and4,

j=i+l, k=i+2, andl=i+3,

A,= AL+4=aL+ jb,,

q4=l, aud

Y! = Y,+4.
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Letters

Comments on “Theory and Measurement of Back

Bias Voltage in IMPATT Diodes”

S.C. TIWARI

In the above paper; back bias voltage in IMPATT diodes has

been discussed in detail; however, some previous work on this

problem has gone unnoticed. Bracket [1] first pointed out that

RF-induced negative resistance was responsible for low-frequency

instability which was ten times or so higher in GaAs as compared

to Si diodes. Using sinusoidal RF voltage, he considered rectifica-

tion in the avalanche region which showed that the dc operating

voltage decreased with increasing RF voltage amplitude. Lee

et al. [2] first discussed anomalous rectification in dc current

when second-order terms in voltage were considered in their

analysis. We have also independently found [3], [4] the existence
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of abnormal rectification in our self-consistent nonlinear

avalanche region analysis. It is the purpose of this paper to

briefly report relevant results.

The standard nonlinear integro-differential Read equation is

solved self-consistently based on a functional relation between

avalanche generated current density JCa( t ) and the avalanche

region electric field E.(t) under simplifying assumptions dis-

cussed in [3] and [5]. Although the effect of reverse saturation

current has also been considered, we write the expressions for

J, = O given by

JC~( t) = JC~(0) exp( K, sinmt/~, u) (1)

Ea(t)=b/(ln (axd)–ln (l+ K,cosat))l’m (2)

where JC=(0) is J, ~( t) at t = O, T, is the intrinsic response time,

K, is the injection parameter which determines the RF voltage

amplitude, a, b, ~d m are ionization rate parameters, and Xa is

the avalanche region width. The Fourier components of J,ti and

E. can be calculated using (1) and (2), and the standard drift

region analysis (e.g., [5]) is used to calculate various quantities of

interest. The results of calculation for GaAs diodes using ioniza-

tion rate parameters measured by Salmer et al. [6] are presented
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