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Fig. 5. Normalized cutoff wavelength as function of flat-width ratio. Slashes
indicate maximum values of 2 for which theory is expected to be valid.
Curve n = oo is circular case. Crosses are Gruner’s results [1] for n = 4.

The first requires that the corner regions must be small enough
compared with the wavelength that the quasistatic assumptions
used to derive the equivalent network constants L and C are
justified. Given that we observe that A =1, this must always be
so.

The other is that the corners are far enough apart so that each
can be considered isolated from the others. Essentially this means
that a, the length of each of the parallel-plate line segments,
should not become much less than comparable with the sep-
aration of the plates [5]. The greatest value of s for which the
solution is likely to be accurate is s =1+ 2tan«/n. For a square
coaxial line (n = 4), this would give s =3 and for an air-filled
square coaxial line where s = 3.5, Z, = 700 [6]. It is reasonable
to conclude that, for this case, the method is valid for almost all
lines likely to be of any practical significance.

In Fig. 5 are shown results computed by this method for n =3,
4, and 5. The slashes indicate the maximum values of s for which
the theory would ordinarily be believed to be good. The crosses
are sample values from Gruner’s numerical solution for the
square coaxial line, and are to be compared with our curve for
n = 4. Agreement is seen to be very good well beyond the range
in which the theory is expected to hold. The curve labelled
n=oc0, the circular coaxial line, is included for comparison,
although the present theory is not applicable to it.

III.

This technique can be applied to more general cases, such as a
line consisting of a rectangle within a rectangle. Even concentric-
ity is not required; all that is needed is that the cross section be
made up of sections of parallel-plate line joined by mitred
elbows. In this more general case, simplications which result from
symmetry are, of course, no longer available. Equation (1) needs
to be used to determine resonance and a large number of differ-
ent matrices will have to be multiplied to determine 4, D.

Determination of L and C for each corner could still be
undertaken quasistatically on the assumption of isolated corners.
In the more general case for L this is easy [7], but for C resorting
to some numerical technique such as finite differences would be
needed [5]. Valid application of the method continues to rest on
having a cross section with small, well-isolated corners.

It may be true though that-—unless one enjoys advantages such
as the ready availability of a software package for handling
finite-difference solutions of Laplace’s equation—for these more
general cases, if a precise answer is required the cross-sectional

GENERALIZATION OF THE METHOD

resonance technique begins to lose its advantage over a purely
numerical solution. On the other hand, if a bound on the answer
is all that is required, this method would indicate that a good
opening approximation is simply to assume that the cutoff wave-
length equates to the mean line circumference.

IV. CONCLUSIONS

A theoretical development has been given which allows ap-
proximate determination of the cutoff wavelength of the first
higher order mode in any transmission line consisting of a pair of
coaxial, similar, similarly oriented regular polygons. Comparison
for the case of a square coaxial line with results obtained by a
purely numerical method indicates that agreement within a few
percent is to be expected for all lines having characteristic imped-
ances likely to be of practical interest. Moreover, even without
solving the transcendental equation which this approach pro-
duces, it is possible to put bounds on the normalized cutoff
wavelength of the first higher order mode. If the problem is
simply to avoid exciting it, this alone may be enough. It has also
been shown that this method is capable of handling more general
problems that do not exhibit a high degree of symmetry.
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An Explicit Six-Port Calibration Method using Five
Standards
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Abstract —A six-port reflectometer calibration method using five stan-
dards is developed, and gives explicit unambiguous expressions for the
calibration constants. The standards are restricted only in that their
impedances may neither all have the same magnitude nor all have the same
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argument. The method permits exact (nonidealized) descriptions of the
standards to be used, and the redundancy inherent in the analysis is utilized
to reduce the problems associated with measurement noise.

I. INTRODUCTION

Various methods for calibrating six-port reflectometers have
been suggested in the literature [1]-[6]. Important differences
between these methods include the number of calibrating stan-
dards required, restrictions on the type of standards, and the
amount of computational effort needed to find the calibration
constants. Some calibration algorithms [5], [6] assume the use of
ideal lossless standards having |T'| =1, but this leads to measure-
ment inaccuracies since practical standards are never lossless.
When the highest reflectometer accuracy is sought, it is important
that the calibration algorithm admit accurate descriptions of the
practical (nonideal) standards used.

This paper presents an explicit (noniterative) calibration
method requiring five standards. None of the standards is as-
sumed ideal, but it is suggested that one be near a match in order
to improve the performance of the calibrated reflectometer near
the centre of the Smith chart [7]. The mathematical approach is
reminiscent, in part, to that of Li and Bosisio [5], and results in
an algorithm which is computationally rapid.

II. INITIAL CONCEPTS

A six-port reflectometer has power meters connected to the
four ports designated i =1, 2, 3, and 4, and a termination with
reflection coefficient T, connected to the measuring port. From
the theory of six-port junctions [8], the ratio P,, of power
measured at port i to that measured at port 4 can be expressed as

2

1+ A,I)

M

Pz,t=qz

which has a solution in the form

(2

where the F,, G,, and H, are given in terms of the ¢, and 4, in
the Appendix. The six-port is therefore calibrated once the three
real constants g, and four complex constants A4, have been
determined.

The calibration method developed here uses five standard
terminations having reflection coefficients I}, (k =1,- - -,5) in the
desired Z, system of measurement. The analysis would be greatly
simplified if one of these standards had a reflection coefficient of
zero, but this is impossible to realize in practice. However, we can
achieve the same analytical simplification by electing to calibrate
the reflectometer to measure reflection coefficients I'” in a system
with the impedance of (say) Zs of the fifth standard. In such a
system, the standards are described by

_T-TL

Fk—-m, k=1,---,5 (3)

and, in particular, I'Y = 0. Because of this normalization, a reflec-
tion coefficient I calculated from (2) is that for a Z; system,
but is readily transformed into that for a Z, system by

T = I+ T

= ) 4
CO1+IUT )

To calibrate the six-port, the five standards are connected
successively to the measuring port, and the power ratios P, ,
recorded. Since we have normalized to ensure I =0, it follows
immediately from (1) that

q,=P;s, i=123 ©)

and it only remains to determine the 4, from (1), which has
simplified to
2

1+4,T;

T =tk

(6)

III. DETERMINATION OF THE A4,

It is convenient at the outset to separate the real and imaginary
parts of the 4, and T/, and define
al + jbl = Al

7

(N

. k
Gt s =— .
T¢I
For each port i, (6) may be expanded as
|4, +2¢,a, — 25, b, = R, .,

k=1,2,3,4 (3)

where

T, —1
R, = hﬂz + T, [ 144 +2¢pas —25.B,] -
k

)

Eliminating the |4,], q,, and b, from the four expressions in (8)
gives

f1|A4|2+gza4_hzb4+ez=0 (10)
where
4
L= Z Tz,k'Yk
k=1
4
g =2 Z T, kvt
k=1
4
h,=2 Z T, i YiSk
k=1
4
T ,-1
: Z ( 1,k Iz)Yk (11)
k=1 ¥l

and one form of the y, is given in the Appendix.
From (10), and a similar expression for port j, the components
of A, are calculable as

L _MPEtE
4 gl
2
b4 — |A4I £4 + 55 (12)
31

where

|A4|2 = M./ —(Mz,j - M,/)l/z

- glz/z" 6253 '_ 5455

(13)
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§i=gh —hg
L=hf -1k
§3=hie,—eh,
£ =8z]3 —f;g,
§s=ge¢ —¢g,. (14)

Having computed A4,, the four values R, ;, k=1, 2, 3, and 4
for each i may be calculated from (9). Then, any three values
I, m, n of k allow the components of the remaining three 4, to be
computed from (8) as

_ Ri,/(Sm _Sn)+Rt,m(sn ‘sl)+Rz,n(s1 —Sm)
' 2[cl(sm_Sn)-i-cm(sn—SI)_'_cn(sl_sm):l
Rl,l(cm - cn)+R1,m(cn - CI)+R1,n(CI - cm)
2[ cl(sm - Sn)+cm(sn —S1)+Cn(S, _sm)]

b =

L3

, i=1,2,3.
(15)

IV. DISCUSSION AND RESULTS

The g, and 4, are calculable from (5), (12), and (15), and then
the F, G;, and H,, from the Appendix. After these calculations, a
direct measure of the quality of the calibration is obtained if the
values P, ;, (k=1,---,5) are substituted into (2), and the results
compared with the T},.

An examination of (11) shows that the analysis collapses if all
v, = 0. This precludes the use of five standards whose imped-
ances all have the same magnitude, or all have the same argu-
ment. Because of their availability, it is convenient (but not
necessary) to choose four standards to be offset short circuits,
and the fifth Z; to be near a match in the desired Z, system of
measurement. In order to ensure a reasonably even distribution
of standards on the Smith chart, it is beneficial to phase the
offset short circuits approximately 90° apart.

Four forms of expression can be found for the vy, by eliminat-
ing the |4,], a;, and b,, from (8) in any onc of four different
ways. Each of these forms will yield all y, =0 for particular
permutations of the four standards I}, (k =1, 2, 3, and 4) if these
have equal magnitudes and are symmetrically disposed on the
Smith chart. For the form of y, given in the Appendix, this
potential difficulty is avoided if the two standards having the
most positive values of ¢, are assigned the indices k=1 and
k=3.

The three possible combinations of i and j which lead to (12)
give three expressions for a,, b, two of which are redundant.
Similarly, there are four expressions available for each a,, b,
(i =1,2,3) from (15), three of which are redundant. In practice,
these expressions do not result in identical values. Gross dis-
crepancy between the values is an early indication of gross
inconsistency in the calibration. The effect of measurement noise,
connector scatter, and imperfect description of the standards
causes small discrepancies, and may be reduced by averaging the
values.

We now consider the choice of sign in (13). Since it is only
meaningful to define the ratio in (1) if the power measured at
port 4 is never zero, reflectometers used for the measurement of
passive terminations have 0 < |4,| <1. Since N, , > 0 and there-
fore |M, ;| > (M, — N, )'/?, it follows from (13) that M, , must
be positive or zero to satisfy the constraints on |4,] In the
particular circumstance |I'}| = C (k=1, 2, 3, and 4) where C is a
constant, then Ly, =0, e, =f,/C, and N, ,=1/C*>1. There-
fore M, ,>1, and the negative sign in (13) is necessary. Any
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Fig. 1. A demonstration of the capability of a six-port reflectometer calibrated

using five standards. The measured magnitude and phase of the reflection
coefficient of a precision coaxial sliding short circuit at 7 GHz are shown,
with the phase plotted as deviation from nominal.

doubt about the general applicability of this negative sign is
readily resolved in practice after reprocessing the calibration data
using the opposite sign, and applying the quality of calibration
test discussed above.

The form of (1) is invalid if any power méter responds solely to
the signal reflected from the measuring port. (If T/ =0, then
P, , =0 forcing g, =0). Such six-port designs are not favored
because of the large dynamic range demanded of the power meter
[8], but a suitable calibration algorithm paralleling that given
here, and based on an alternative expression to (1), is available
from the authors.

The calibration algorithm has been implemented on a desk-top
computer and applied to the six-port junction of Somlo and
Hunter [4], with the power measured either by Schottky diodes
calibrated in situ, or by a recently developed accurate technique
using uncalibrated diodes [9]. For coaxial measurements, four
standards are realized using a sliding short circuit whose losses
and micrometer error are known from the application of a
technique described elsewhere [4]. The fifth standard is a load
element sliding in a precision coaxial line (nominal impedance
Z, =50 Q) with Z; calculated from the measured line dimen-
sions and the theoretical properties of the line materials. The
effect on P, 5 of the residual reflection of the load element is
reduced by setting it to three positions along the line, and
applying an averaging algorithm [7]. The calibration quality is
such that the magnitude of the difference between the known
reflection coefficient Ty of each standard, and that computed
from (2) using the P, ;, is less than 107 *.

Tests with the fifth standard significantly different to Z,
(|T5| > 0.2) revealed increasing sensitivity of the results to the
measurement noise.

As a demonstration of the capability of a six-port reflectometer
system calibrated using these five standards, the magnitude and
phase of the reflection coefficient of a precision coaxial sliding
short circuit were measured at 7 GHz. The short circuit was
moved in equal increments over a half-wavelength, and the
results are shown in Fig. 1. The standard deviation of the
magnitude was 0.0004, and the measured phase tracked the
nominal phase within 0.1° with a standard deviation of 0.032°,
equivalent to a positioning error of less than 2 pm.

V. CONCLUSIONS

A method requiring five standards has been presented for the
calibration of a six-port reflectometer. Accurate descriptions of
practical standards are admitted, and the calibration constants
are given by explicit unambiguous formulas which are readily
programmable and rapidly evaluated. It is shown how the re-
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dundancy inherent in the analysis may be used to reduce the
effects of measurement noise, connector scatter, and imperfect
descriptions of the calibrating standards.

It is suggested that, in practice, the standards be four short
circuits offset by approximately 90°, and a near match. These
standards are convenient because of their availability, and benefi-
cial in that their distribution is likely to avoid the accuracy
degradation which can occur when measuring in areas of the
Smith chart remote from a calibrating standard. Results are
presented which demonstrate the viability of the calibration
method.

A BASIC listing of the calibration algorithm is available from
the authors.

APPENDIX

Expressions [5] for the constants F,, G,, and H, in terms of the
q, and A,, and for v, are given here in compact programmable
form:

_1)’

[~~~

E= S (I (b= )+ AP (b= ) + 14 (5~ b))
= G2 14 e =) 47 )
1 2ql J k ! k ! , / 3 "
=(_1)1 2 _ ) B
PIz q [IA_/I (akbl albk)+ [Akl (albj ajbl)

+ IAllz(ajbk - akbj)]
Y. = (Cj - Ck)[(sz - S/)(Ck —¢)—(¢— C/)(Sk - S/)]
+(e— c[)[(sl - sl)(c_/ —a)—(¢— cl)(Sj - Sk)]

Letters

where
i=1,2,3,and 4,
j=i+1,k=i+2,and /=i+3,
A,=A, . ,=a, + jb,
q,=1, and
Y, = Yi+a-
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Comments on “Theory and Measurement of Back
Bias Voltage in IMPATT Diodes”

S.C. TIWARI

In the above paper,! back bias voltage in IMPATT diodes has
been discussed in detail; however, some previous work on this
problem has gone unnoticed. Bracket [1] first pointed out that
RF-induced negative resistance was responsible for low-frequency
instability which was ten times or so higher in GaAs as compared
to Si diodes. Using sinusoidal RF voltage, he considered rectifica-
tion in the avalanche region which showed that the dc operating
voltage decreased with increasing RF voltage amplitude. Lee
et al. [2] first discussed anomalous rectification in dc current
when second-order terms in voltage were considered in their
analysis. We have also independently found [3], [4] the existence

Manuscript received April 23, 1984,

The author was with the Centre of Research in Microwave Tubes,
Department of Electronics Engineering, Institute of Technology,
Banaras Hindu University, Varanasi-221005, India. He can now be reached
care of P. Khastgir, G-13, Hyderabad Colony, BHU Campus.

'L. H. Holway, Jr., and § L. G. Chu, IEEE Trans. Microwave Theory
Tech.,vol. MTT-31, pp.916-922, 1983.

of abnormal rectification in our self-consistent nonlinear
avalanche region analysis. It is the purpose of this paper to
briefly report relevant results.

The standard nonlinear integro-differential Read equation is
solved self-consistently based on a functional relation between
avalanche generated current density J,,(z) and the avalanche
region electric field E,(¢) under simplifying assumptions dis-
cussed in [3] and [5]. Although the effect of reverse saturation
current has also been considered, we write the expressions for
J, =0 given by

Jea(#) = 1. (0) exp (K, sin w1 /7,0) ey

)

where J__(0) is J ,(¢) at t=0, 7, is the intrinsic response time,
K, is the injection parameter which determines the RF voltage
amplitude, a, b, and m are ionization rate parameters, and x, is
the avalanche region width. The Fourier components of J , and
E, can be calculated using (1) and (2), and the standard drift
region analysis (e.g., [5]) is used to calculate various quantities of
interest. The results of calculation for GaAs diodes using ioniza-
tion rate parameters measured by Salmer er al. [6] are presented

E,(t) =b/(1n (ax,)—1n (1+ K, cos wt) )"
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